Städtisches Gymnasium Lünen-Altlünen Schulinterner Lehrplan für das Fach Informatik im Wahlpflichtbereich der Klasse 9 / 10

Wahlpflichtbereich Informatik

(Fassung vom 30.04.2025)

In der nachfolgenden Übersicht über die Unterrichtsvorhaben wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Die Übersicht dient dazu, für die einzelnen Jahrgangsstufen allen am Bildungsprozess Beteiligten einen schnellen Überblick über Themen bzw. Fragestellungen der Unterrichtsvorhaben unter Angabe besonderer Schwerpunkte in den Inhalten und in der Kompetenzentwicklung zu verschaffen. Dadurch soll verdeutlicht werden, welches Wissen und welche Fähigkeiten in den jeweiligen Unterrichtsvorhaben besonders gut zu erlernen sind und welche Aspekte deshalb im Unterricht hervorgehoben thematisiert werden sollten. Unter den Hinweisen des Übersichtsrasters werden u.a. Möglichkeiten im Hinblick auf inhaltliche Fokussierungen und interne Verknüpfungen ausgewiesen.

Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Der Schulinterne Lehrplan ist so gestaltet, dass er zusätzlichen Spielraum für Vertiefungen, besondere Interessen von Schülerinnen und Schülern, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Klassenfahrten o.Ä.) belässt. Abweichungen über die notwendigen Absprachen hinaus sind im

Rahmen des pädagogischen Gestaltungsspielraumes der Lehrkräfte möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

Lernerfolgsüberprüfung und Leistungsbewertung

Die rechtlich verbindlichen Grundsätze der Leistungsbewertung sind im Schulgesetz (§ 48 SchulG) sowie in der Ausbildungs- und Prüfungsordnung für die Sekundarstufe I (§ 6 APO-SI) dargestellt. Demgemäß sind bei der Leistungsbewertung von Schülerinnen und Schülern im Wahlpflichtfach Informatik erbrachte Leistungen in den Beurteilungsbereichen "Schriftliche Arbeiten" sowie "Sonstige Leistungen im Unterricht" zu berücksichtigen. Die Leistungsbewertung insgesamt bezieht sich auf die im Zusammenhang mit dem Unterricht erworbenen Kompetenzen und setzt voraus, dass die Schülerinnen und Schüler hinreichend Gelegenheit hatten, die später ausgewiesenen Kompetenzen zu erwerben.

Erfolgreiches Lernen ist kumulativ. Dies erfordert, dass Unterricht und Lernerfolgsüberprüfungen darauf ausgerichtet sein müssen, Schülerinnen und Schülern Gelegenheit zu geben, Kompetenzen wiederholt und in wechselnden Zusammenhängen unter Beweis zu stellen. Für Lehrerinnen und Lehrer sind die Ergebnisse der Lernerfolgsüberprüfungen Anlass, die Zielsetzungen und die Methoden ihres Unterrichts zu überprüfen und ggf. zu modifizieren. Für die Schülerinnen und Schüler sollen ein den Lernprozess begleitendes Feedback sowie Rückmeldungen zu den erreichten Lernständen eine Hilfe für die Selbsteinschätzung sowie eine Ermutigung für das weitere Lernen darstellen. Dies kann auch in Phasen des Unterrichts erfolgen, in denen keine Leistungsbeurteilung durchgeführt wird. Die Beurteilung von Leistungen soll ebenfalls grund-

sätzlich mit der Diagnose des erreichten Lernstandes und Hinweisen zum individuellen Lernfortschritt verknüpft sein.

Die Leistungsbewertung ist so anzulegen, dass sie den in den Fachkonferenzen gemäß Schulgesetz (§ 70 Abs. 4 SchulG) beschlossenen Grundsätzen entspricht, dass die Kriterien für die Notengebung den Schülerinnen und Schülern transparent sind und die Korrekturen sowie die Kommentierungen den Lernenden auch Erkenntnisse über die individuelle Lernentwicklung ermöglichen. Dazu gehören – neben der Etablierung eines angemessenen Umgangs mit eigenen Stärken, Entwicklungsnotwendigkeiten und Fehlern – insbesondere auch Hinweise zu individuell erfolgversprechenden allgemeinen und fachmethodischen Lernstrategien.

Im Sinne der Orientierung an den zuvor formulierten Anforderungen sind grundsätzlich alle im Lehrplan ausgewiesenen Kompetenzbereiche bei der Leistungsbewertung angemessen zu berücksichtigen. Überprüfungsformen schriftlicher, mündlicher und praktischer Art sollen deshalb darauf ausgerichtet sein, die Erreichung der dort aufgeführten Kompetenzerwartungen zu überprüfen. Ein isoliertes, lediglich auf Reproduktion angelegtes Abfragen einzelner Daten und Sachverhalte allein kann dabei den formulierten Ansprüchen an die Leistungsfeststellung nicht gerecht werden. Durch die zunehmende Komplexität der Lernerfolgsüberprüfungen im Verlauf der Sekundarstufe I werden die Schülerinnen und Schüler auf die Anforderungen der nachfolgenden schulischen und beruflichen Ausbildung vorbereitet.

Bei Leistungen, die die Schülerinnen und Schüler im Rahmen von Partneroder Gruppenarbeiten erbringen, ist der individuelle Beitrag zum Ergebnis der Partner- bzw. Gruppenarbeit einzubeziehen.

Beurteilungsbereich "Schriftliche Arbeiten"

Schriftliche Arbeiten dienen der schriftlichen Überprüfung von Kompetenzen. Sie sind so anzulegen, dass die Schülerinnen und Schüler ihr Wissen sowie ihre Fähigkeiten und Fertigkeiten nachweisen können. Sie bedürfen angemessener Vorbereitung und verlangen klar verständliche Aufgabenstellungen. In ihrer Gesamtheit sollen die Aufgabenstellungen die Vielfalt der im Unterricht erworbenen Kompetenzen und Arbeitsweisen widerspiegeln. Überprüfungsformen, die für schriftliche Arbeiten eingesetzt werden, müssen bei verschiedenen Gelegenheiten hinreichend und rechtzeitig angewandt werden, so dass Schülerinnen und Schüler mit ihnen vertraut sind. Zur Schaffung einer angemessenen Transparenz erfolgt die Bewertung der schriftlichen Arbeiten kriteriengeleitet. Einmal im Schuljahr kann gem. APO SI eine schriftliche Arbeit durch eine andere, in der Regel schriftliche, in Ausnahmefällen auch gleichwertige nicht schriftliche Leistungsüberprüfung ersetzt werden.

Beurteilungsbereich "Sonstige Leistungen im Unterricht"

Der Beurteilungsbereich "Sonstige Leistungen im Unterricht" erfasst die im Unterrichtsgeschehen durch mündliche, schriftliche und praktische Beiträge erkennbare Kompetenzentwicklung der Schülerinnen und Schüler. Bei der Bewertung berücksichtigt werden die Qualität, die Quantität und die Kontinuität der Beiträge. Der Stand der Kompetenzentwicklung im Beurteilungsbereich "Sonstige Leistungen im Unterricht" wird sowohl durch kontinuierliche Beobachtung während des Schuljahres (Prozess der Kompetenzentwicklung) als auch durch punktuelle Überprüfungen (Stand der Kompetenzentwicklung) festgestellt.

Zum Beurteilungsbereich "Sonstige Leistungen im Unterricht" – ggf. auch auf der Grundlage der außerschulischen Vor- und Nachbereitung von Unterricht – zählen u.a.:

- mündliche Beiträge zum Unterricht (z.B. Beiträge zum Unterrichtsgespräch, Kurzvorträge und Referate),
- praktische Beiträge zum Unterricht (Produkte wie z. B. Dateien, Präsentationen, Ablaufpläne, Beiträge zu Projekten und Programmen),
- schriftliche Beiträge zum Unterricht (z.B. Protokolle, Materialsammlungen, Hefte/Mappen, Portfolios, Lerntagebücher),
- · kurze schriftliche Übungen,
- Beiträge im Rahmen eigenverantwortlichen, schüleraktiven und ggf. kooperativen Handelns (z.B. Recherchen, Befragungen, Erkundungen, Präsentationen, Planspiele, Simulationen, Projekte).

Mögliche Überprüfungsformen

Darstellungs- und Dokumentationsaufgabe, z.B.

- Darstellung eines informationstechnischen Sachverhaltes,
- Dokumentation von Sachverhalten in Tabellen oder Diagrammen,
- · Auswahl geeigneter Darstellungsformen,
- Darstellung von informatischen Sachverhalten im Rahmen des Inhaltsfeldes "Informatik, Mensch und Gesellschaft".

Entscheidungs- und Bewertungsaufgabe, z.B.

- Begründung des Vorgehens oder des Einsatzes eines bestimmten Informatiksystems zur Lösung eines Sachproblems,
- Abwägen zwischen dem Einsatz verschiedener Informatiksysteme zur Lösung bestimmter Sachprobleme,

• Bewertung des Einsatzes eines bestimmten Informatiksystems zur Lösung eines Sachproblems unter vorgegebenen Aspekten.

Gestaltungs- und Konstruktionsaufgabe, z.B.

- Entwicklung oder Modifikation eines informatischen Modells für ein Sachproblem,
- Entwicklung oder Modifikation von Algorithmen oder Programmen,
- Übertragung eines Modells auf ein prozessorgesteuertes Gerät.

Analyse- und Parameteraufgabe, z.B.

- Analyse informatischer Modelle, Algorithmen oder Programme,
- Beschreibung der Auswirkungen unterschiedlicher Parametergrößen,
- Erstellung von Wertbelegungstabellen,
- Reflexion über die Passgenauigkeit eines Modells,
- Bewertung des Modellbildungsprozesses.

Optimierungsaufgabe, z.B.

- Darstellung, Beschreibung und Optimierung von Abläufen,
- Strukturierung von Programmen durch Methoden.

Darüber hinaus ist der Einsatz weiterer geeigneter Überprüfungsformen möglich. Insbesondere kann eine Klassenarbeit im Fach Informatik auch praktische - an einem prozessorgesteuerten Gerät erstellte - Anteile enthalten.

Übersicht über die Unterrichtsvorhaben

Jahrgangsstufe 9

Unterrichtsvorhaben I: Überall Automaten – Vom Lichtschalter zum Marienkäfer

Schwerpunkte der Kompetenzentwicklung – Übergeordnete Kompetenzerwartungen:

Die Schülerinnen und Schüler

- strukturieren informatische Sachverhalte (MI),
- entwickeln informatische Modelle zu gegebenen Problemstellungen (MI),
- wenden ein informatisches Verfahren zur Lösung eines Problems an (MI),
- interpretieren unterschiedliche Darstellungen von informatischen Sachverhalten (DI).

Inhaltsfelder: Automaten und formale Sprachen

Inhaltliche Schwerpunkte:

• Aufbau und Wirkungsweise von Automaten

Konkretisierte Kompetenzerwartungen:

Die Schülerinnen und Schüler

- analysieren die Funktionsweise eines Automaten mit Hilfe eines Zustandsübergangsdiagramms (DI), (MKR 6.3)
- entwickeln einen Automaten für eine konkrete Problemstellung (MI). (MKR 6.3)

Zeitbedarf: ca. 15 Ustd.

Ggf. Absprachen zur Leistungsüberprüfung: /

Verbindliche Hinweise und Absprachen zu diesem Unterrichtsvorhaben / Umsetzung: Anhand des endlichen Automaten "Lichtschalter" werden die Begriffe "Zustand", "Übergang", "Sensor" und "Aktion", sowie die grafische Darstellung eines Automaten als Zustandsübergangsdiagramm eingeführt. Diese Begrifflichkeiten werden anschließend auf die Elemente in der Programmierumgebung "Kara" übertragen. Im Rahmen der Programmierumgebung kann der Marienkäfer "Kara" verschiedene Aufgaben lösen. Dabei nimmt die Komplexität der Aufgaben immer weiter zu. Die verschiedenen Schwierigkeitsgrade der Aufgaben erlauben besonders gut ein binnendifferenziertes Arbeiten. Die Dokumentation der Lösungen kann auch digital über Screenshots der Zustandsbeschreibungen erfolgen. Sowohl das Programm als auch weiteres Unterrichtsmaterial findet man unter: SwissEduc - Informatik - Kara – Programmieren mit endlichen Automaten (https://www.swisseduc.ch/informatik/karatojava/kara/)

<u>Unterrichtsvorhaben II:</u> Streng geheim – Wir schicken uns Nachrichten

Schwerpunkte der Kompetenzentwicklung – Übergeordnete Kompetenzerwartungen:

Die Schülerinnen und Schüler

- bewerten informatische Sachverhalte kriteriengeleitet, (A),
- entwickeln Handlungsstrategien f
 ür informatische Fragestellungen (A),
- strukturieren informatische Sachverhalte (MI),
- wenden ein informatisches Verfahren zur Lösung eines Problems an (MI).

Inhaltsfelder: Information und Daten; Informatik, Mensch und Gesellschaft

Inhaltliche Schwerpunkte:

- Daten und ihre Codierung
- Verschlüsselungsverfahren
- Erfassung, Verarbeitung und Verwaltung von Daten
- Datenschutz und Datensicherheit

Konkretisierte Kompetenzerwartungen:

Die Schülerinnen und Schüler

- verwenden Substitutionsverfahren als Möglichkeit der Verschlüsselung (MI),
- beurteilen verschiedene Verschlüsselungsverfahren unter Berücksichtigung von ausgewählten Sicherheitsaspekten (A), (MKR 1.4)
- erläutern die Prinzipien der Datensicherheit (Vertraulichkeit, Integrität und Verfügbarkeit) und berücksichtigen diese beim Umgang mit Daten (A), (MKR 1.4)
- entwickeln kriteriengeleitet Handlungsoptionen für den Umgang mit eigenen und fremden Daten (A).

Zeitbedarf: ca. 14 Ustd.

Ggf. Absprachen zur Leistungsüberprüfung: /

Verbindliche Hinweise und Absprachen zu diesem Unterrichtsvorhaben / Umsetzung: Zunächst können die Themenbereiche Sicherheitsprobleme und Sicherheitsziele im Bereich der digitalen Kommunikation beleuchtet werden (z. B. Phishing-Mails). Beispiele hierfür gibt es zahlreich im privaten wie im Berufsleben. Die Sicherheitsziele "Vertraulichkeit, Integrität und Verfügbarkeit" werden hierbei zu zentralen Unterrichtsthemen und von den Schülerinnen und Schülern erläutert. Weiterhin wird das Bewusstsein dafür geschärft, wie privat oder öffentlich Nachrichten in sozialen Medien, in E-Mails oder auf anderen Internetplattformen sind. Fragestellungen können dabei z.B. sein: Kann jemand außer dem Empfänger meine E-Mails lesen? Wer kann das? Handlungsoptionen für den Umgang mit eigenen und fremden Daten werden entwickelt. Anschließend beschäftigen sich die Schülerinnen und

Schüler mit kryptographischen Verfahren, um Botschaften zu verschlüsseln. Ein einfaches Beispiel dafür bietet der Cäsar-Algorithmus als Substitutionsverfahren. Die Beurteilung dieses Verschlüsselungsverfahrens unter Berücksichtigung einer möglichen Mustererkennung oder Ermittlung des Schlüssels durch eine Häufigkeitsanalyse führt zum Wunsch nach einem polyalphabetischen Chiffrierverfahren. Das Vigenère-Verfahren wird eingeführt und angewendet. Auch dieses Verfahren wird unter Berücksichtigung einer möglichen Mustererkennung oder Ermittlung des Schlüssels beurteilt. Weitere Aspekte, die für die Beurteilung eine Rolle spielen, sind das Verhältnis der Länge des verwendeten Schlüssels zum verschlüsselten Text, sowie die Notwendigkeit den Schlüssel zu übermitteln. Unterstützende Materialien und Webanwendungen findet man unter:

- CrypTool-Online CrypTool Portal (https://www.cryptool.org/de/cto/)
- Spioncamp: Krypthografie lernen? So geht's! | Schultech (https://schultech.de/spioncamp-kryptografie-material-der-universitaet-wuppertal/)
- inf-schule | Kryptologie » Historische Chiffriersysteme
 (https://inf-schule.de/kryptologie/historischechiffriersysteme)

Unterrichtsvorhaben III: Logische Schaltungen

Schwerpunkte der Kompetenzentwicklung – Übergeordnete Kompetenzerwartungen:

Die Schülerinnen und Schüler

- analysieren und beschreiben informatische Sachverhalte (A),
- bewerten mögliche Auswirkungen des Einsatzes von Informatiksystemen (A),
- strukturieren informatische Sachverhalte (MI),
- analysieren Modelle und Implementierungen (MI),
- entwickeln informatische Modelle zu gegebenen Problemstellungen (MI),
- beurteilen Modelle und Implementierungen hinsichtlich der Lösung einer Problemstellung (MI),
- veranschaulichen informatische Sachverhalte (DI),
- interpretieren Ergebnisse von Implementierungen (DI),
- stellen informatische Sachverhalte unter Verwendung von Fachbegriffen dar (KK).

Inhaltsfelder: Information und Daten; Informatiksysteme; Informatik, Mensch und Gesellschaft

Inhaltliche Schwerpunkte:

- Erfassung, Verarbeitung und Verwaltung von Daten
- Anwendung von Informatiksystemen
- Logische Schaltungen
- Informatiksysteme in der Lebens- und Berufswelt

Konkretisierte Kompetenzerwartungen:

Die Schülerinnen und Schüler

- interpretieren Daten aus dem Ergebnis eines Verarbeitungsprozesses (DI),
- identifizieren f\u00fcr (vernetzte) Informatiksysteme kriteriengeleitet Anwendungsbereiche in der Lebensund Berufswelt (A),
- erstellen und simulieren logische Schaltungen mithilfe digitaler Werkzeuge (MI),
- bewerten eine logische Schaltung hinsichtlich ihrer Funktionalität (A),
- diskutieren Auswirkungen des Einsatzes von Informatiksystemen an ausgewählten Beispielen aus der Berufswelt (A/KK). (BNE - 9)

Zeitbedarf: ca. 16 Ustd.

Ggf. Absprachen zur Leistungsüberprüfung: /

Verbindliche Hinweise und Absprachen zu diesem Unterrichtsvorhaben / Umsetzung: Mithilfe der Simulationssoftware LogicSim für logische Schaltungen oder mithilfe von physischen Bausätzen, untersuchen die Lernenden die Funktion der grundlegenden Gatter AND, OR, XOR und NOT. In einfachen Anwendungskontexten werden Schalttabellen bzw. Schaltungen entwickelt und ineinander überführt. Weiter werden logische Schaltungen hinsichtlich ihrer Funktionalität getestet und bewertet und Ausgaben von Schaltnetzen interpretiert. Schaltungen für verschiedene Steuerungen (z.B. Türöffner, Fahrstühle Beleuchtungen, Zähler, Sonnenschutzsysteme, Heizungsregler, Bahn- oder Flugsicherungssysteme) werden als Ausgangspunkte genutzt, um kriteriengeleitet Anwendungsbereiche für einfache und vernetzte Informatiksysteme in der Lebens- und Berufswelt zu identifizieren und an ausgewählten Beispielen aus der Berufswelt die Auswirkungen des Einsatzes von Informatiksystemen auch in Hinblick auf eine nachhaltige Entwicklung diskutiert. Um zu verdeutlichen, wie ein Rechenwerk funktioniert, simulieren die Lernenden Halb- und Volladdierer und kombinieren diese zu einem 4-Bit-Addier- und Subtrahierwerk.

Entscheidungen zu fach- und/oder fächerübergreifenden Fragen: Auf die Verwendung von NAND- und NOR-Gattern kann verzichtet werden.

Unterrichtsvorhaben IV: Robotik

Schwerpunkte der Kompetenzentwicklung – Übergeordnete Kompetenzerwartungen:

Die Schülerinnen und Schüler

- formulieren Fragen zu informatischen Sachverhalten (A)
- stellen informatische Sachverhalte strukturiert dar und analysieren deren Zusammenhänge (A)
- erläutern und beurteilen informatische Modellierungen (A)
- begründen Entscheidungen bei der Nutzung von Informatiksystemen (A)
- bewerten mögliche Auswirkungen des Einsatzes von Informatiksystemen (A)
- erstellen informatische Modelle zu gegebenen Sachverhalten (MI)
- implementieren informatische Modelle (MI)
- analysieren und bewerten Informatiksysteme und Anwendungen unter dem Aspekt der zugrundeliegenden Modellierung (MI)
- kooperieren bei der Bearbeitung informatischer Probleme (KK)
- stellen informatische Sachverhalte unter Verwendung von Fachbegriffen m\u00fcndlich und schriftlich sachgerecht dar (KK)

Inhaltsfelder: Information und Daten; Informatiksysteme; Informatik, Mensch und Gesellschaft; Algorithmen

Inhaltliche Schwerpunkte:

- Erfassung, Verarbeitung und Verwaltung von Daten
- Information, Daten und ihre Codierung
- Aufbau und Funktionsweise von Informatiksystemen und ihren Komponenten
- Anwendung von Informatiksystemen
- Entwurf von Algorithmen
- ◆ Analyse von Algorithmen

Konkretisierte Kompetenzerwartungen:

- erläutern den Zusammenhang und die Bedeutung von Information und Daten (A),
- repräsentieren Information in natürlicher Sprache, formalsprachlich und graphisch (DI)
- codieren Daten für die Verarbeitung mit einem Informatiksystem (DI),
- interpretieren Ergebnisse eines Datenverarbeitungsprozesses (DI),
- wählen geeignete Datentypen im Kontext eines Anwendungsbeispiels aus (MI),
- verarbeiten Daten mithilfe von Informatiksystemen (MI),
- verwenden arithmetische und logische Operationen (MI),
- entwerfen Algorithmen unter Verwendung des Variablenkonzeptes und von Kontrollstrukturen (MI),
- stellen Algorithmen in verschiedenen Repräsentationen dar (DI),
- strukturieren und zerlegen Algorithmen in Teilalgorithmen (MI),
- modifizieren Programme (MI),
- überprüfen Handlungsvorschriften auf Eindeutigkeit und Terminierung (A),
- beurteilen die Problemangemessenheit eines Algorithmus (A),
- analysieren und testen Algorithmen und Programme (MI)

Zeitbedarf: ca. 20 Ustd

Ggf. Absprachen zur Leistungsüberprüfung: /

Verbindliche Hinweise und Absprachen zu diesem Unterrichtsvorhaben / Umsetzung: Mithilfe von Roboterbausätzen (z.B. LEGO Mindstorms EV3) und einer grafischen Programmierumgebung (z.B. EV3 Classroom) werden schrittweise komplexer werdende Problemstellungen gelöst. Hierzu werden verschiedene Sensoren eingesetzt, aufgrund derer Sensorwerte dann Aktoren angesteuert werden. Kontrollstrukturen (z.B. Verzweigung und Schleife) sind aus den Grundlagen der Algorithmik in der Jahrgangsstufe 5 bekannt und werden hier vertieft und kombiniert. Die Benutzung von Variablen, zur Speicherung von z.B. Sensorwerten kann eingeführt werden.

Jahrgangsstufe 10

<u>Unterrichtsvorhaben V:</u> Künstliche Intelligenz – Drei Methoden des maschinellen Lernens zum datenbasierten Problemlösen

Schwerpunkte der Kompetenzentwicklung – Übergeordnete Kompetenzerwartungen:

Die Schülerinnen und Schüler

- analysieren und beschreiben informatische Sachverhalte (A),
- bewerten mögliche Auswirkungen des Einsatzes von Informatiksystemen (A),
- entwickeln Handlungsstrategien f
 ür informatische Fragestellungen (A),
- erläutern adressatengerecht informatische Sachverhalte (KK),
- stellen informatische Sachverhalte unter Verwendung von Fachbegriffen dar (KK).

Inhaltsfelder: Information und Daten; Informatiksysteme; Informatik, Mensch und Gesellschaft

Inhaltliche Schwerpunkte:

- überwachtes Lernen
- unüberwachtes Lernen
- bestärkendes Lernen

Konkretisierte Kompetenzerwartungen:

Die Schülerinnen und Schüler

- beschreiben Anwendungsbeispiele künstlicher Intelligenz zum überwachten, unüberwachten und bestärkenden Lernen (KK),
- beschreiben die grundlegende Funktionsweise maschinellen Lernens (überwacht, unüberwacht, bestärkend) in verschiedenen Anwendungsbeispielen (KK), (MKR 6.1)
- ordnen begründet die Methoden des maschinellen Lernens (überwachtes Lernen, unüberwachtes, bestärkendes Lernen) verschiedenen Anwendungsbeispielen zu (A),
- analysieren den Einfluss von Trainingsdaten auf die Ergebnisse eines Verfahrens maschinellen Lernens (A). (MKR 6.4)

Zeitbedarf: ca. 14 Ustd.

Ggf. Absprachen zur Leistungsüberprüfung: /

Verbindliche Hinweise und Absprachen zu diesem Unterrichtsvorhaben / Umsetzung: Das Unterrichtsvorhaben knüpft an das Unterrichtsvorhaben zu Künstlicher Intelligenz in Jahrgang 6 an. Ausge-

hend von der Lebens- und Erfahrungswelt der Lerngruppen werden in der Klasse 10 Anwendungsbeispiele von KI-Systemen gesammelt, strukturiert und durch die Lehrkraft ergänzt. Für das <u>überwachte Lernen</u> werden die Grundideen aus der Klasse 6 zur Entwicklung eines Entscheidungsbaumes wiederholt und gefestigt (z. B. "Quartett-Kartenspiel" zu den Lebensmitteln (vgl. https://www.prodabi.de/silp56-entscheidungsbaeume/) und "ein neuronales Netz aus Menschen" (vgl. https://www.science-on-stage.-de/sites/default/files/material/anweisungen_neuronales-netz-als-enaktives-modell.pdf). Dabei wird auch der Einfluss der Trainingsdaten auf die Ergebnisse analysiert. Die Grundidee des <u>unüberwachten Lernens</u> zum Clustern von Daten wird z.B. mithilfe der Unplugged-Aktivität "Goldrush" eingeführt (vgl. https://computingeducation.de/proj-snaip-B/). Diese Grundidee kann später auf einen eigenen Datensatz angewandt werden. Die Grundidee des <u>bestärkenden Lernens</u> wird z.B. mithilfe der Unplugged-Aktivität "Mensch, Maschine!"-Spiel (vgl. https://www.prodabi.de/mensch-maschine-spiel/) oder der interaktiven Webseite (vgl. https://www.stefanseegerer.de/schlag-das-krokodil/) eingeführt. Weitere Materialien findet man unter:

- Seegerer, S., Michaeli, T., & Romeike, R. (2020). So lernen Maschinen. LOG IN Informatische Bildung und Computer in der Schule, 193-194, 25-29.
- https://computingeducation.de/pub/2020 Seegerer-Michaeli-Romeike LOGIN.pdf
- https://computingeducation.de/c5cc6feaa24720ab18da2d5a7b53b081/SoLernenMaschinen.pdf
 Entscheidungen zu fach- und/oder f\u00e4cher\u00fcbergreifenden Fragen: /

<u>Unterrichtsvorhaben VI:</u> Wir präsentieren uns im Internet – Aufbau und Struktur von Webseiten

Schwerpunkte der Kompetenzentwicklung – Übergeordnete Kompetenzerwartungen:

Die Schülerinnen und Schüler

- analysieren und beschreiben informatische Sachverhalte (A),
- strukturieren informatische Sachverhalte (MI),
- interpretieren unterschiedliche Darstellungen von informatischen Sachverhalten (DI),
- erläutern adressatengerecht informatische Sachverhalte (KK),
- stellen informatische Sachverhalte unter Verwendung von Fachbegriffen dar (KK),
- kooperieren im Rahmen des projektorientierten Arbeitens (KK), (MKR 3.1)
- planen die Dokumentation und Präsentation ihrer Vorgehensweise und Arbeitsergebnisse eigenständig (KK).

Inhaltsfelder: Information und Daten; Automaten und formale Sprachen; Informatiksysteme; Informatik, Mensch und Gesellschaft

Inhaltliche Schwerpunkte:

- Daten und ihre Codierung
- Erstellung und Analyse von Quelltexten
- Anwendung von Informatiksystemen
- Datenschutz und Datensicherheit

Konkretisierte Kompetenzerwartungen:

Die Schülerinnen und Schüler

- interpretieren Daten aus dem Ergebnis eines Verarbeitungsprozesses (DI),
- beschreiben an ausgewählten Beispielen das Codierungsprinzip von Pixel- und Vektorgrafiken (KK),
- analysieren Quelltexte auf syntaktische Korrektheit (A/MI),
- erstellen syntaktisch korrekte Quelltexte in einer geeigneten Dokumentenbeschreibungssprache und in einer Programmiersprache (MI),
- wenden zielgerichtet Prinzipien der strukturierten Dateiverwaltung an (MI), (MKR 1.3)
- bewerten verschiedene Lizenzmodelle im Hinblick auf Weiterentwicklung und Nutzung digitaler Produkte (A), (MKR 4.4)
- entwickeln kriteriengeleitet Handlungsoptionen für den Umgang mit eigenen und fremden Daten (A). (MKR 1.3, 1.4)

Zeitbedarf: ca. 20 Ustd.

Ggf. Absprachen zur Leistungsüberprüfung: /

Verbindliche Hinweise und Absprachen zu diesem Unterrichtsvorhaben / Umsetung: Um den Schülerinnen und Schülern eine alltagsrelevante Anknüpfung zu ermöglichen und eine hohe Motivation zu erzeugen, ist dieses Unterrichtsvorhaben projektartig angelegt. Am Ende der Reihe steht eine Webseite als individuelles Produkt der Schülerinnen und Schüler. Zunächst müssen jedoch die Grundlagen der Beschreibung von Dokumenten und die Formatierung und Aufbereitung von Daten mittels Auszeichnungen eingeführt werden. Dazu können neben den Auszeichnungen selbst auch Formatierungsmöglichkeiten mit CSS genutzt werden. Dokumentenbeschreibungssprachen bieten aufgrund der breiten Anwendungsszenarien und des Sprachumfangs trotz eines einfachen Einstiegs eine Vielzahl individueller Differenzierungs- und Vertiefungsmöglichkeiten. Als grafische Elemente können auch Bilder eingebunden werden. Ein Vergleich von Pixel und Vektorgrafiken bietet sich an. Die Schülerinnen und Schüler präsentieren sich in diesem Alter vielleicht schon im Netz, in jedem Fall haben sie in Ihrem Alltag vielfältige Berührungspunkte mit Webseiten und Apps. So ergibt sich einerseits eine direkte Anknüpfung an den Alltag als auch die Notwendigkeit auf Möglichkeiten und Pflichten bei der digitalen Veröffentlichung von Daten einzugehen. Dabei stehen nicht nur soziale Regeln (Netiquette, Regeln zur Veröffentlichung, Anonymität im Netz, Barrierefreiheit), sondern auch rechtliche Pflichten (Datenschutz, Urheberrecht, Lizenzen) im Fokus.

Unterrichtsvorhaben VII: Programmierung mit JAVA-Script

Schwerpunkte der Kompetenzentwicklung – Übergeordnete Kompetenzerwartungen:

Die Schülerinnen und Schüler

- bewerten informatische Sachverhalte kriteriengeleitet (A),
- strukturieren informatische Sachverhalte (MI),
- analysieren Modelle und Implementierungen (MI),
- entwickeln informatische Modelle zu gegebenen Problemstellungen (MI),
- implementieren informatische Modelle (MI),
- beurteilen Modelle und Implementierungen hinsichtlich der Lösung einer Problemstellung (MI),
- wenden ein informatisches Verfahren zur Lösung eines Problems an (MI),
- identifizieren informatische Sachverhalte in komplexen Anwendungsbereichen (DI),
- veranschaulichen informatische Sachverhalte (DI),
- interpretieren Ergebnisse von Implementierungen (DI),
- interpretieren unterschiedliche Darstellungen von informatischen Sachverhalten (DI),
- stellen informatische Sachverhalte unter Verwendung von Fachbegriffen dar (KK).

Inhaltsfelder: Information und Daten; Algorithmen; Automaten und formale Sprachen; Informatiksysteme

Inhaltliche Schwerpunkte:

- Erfassung, Verarbeitung und Verwaltung von Daten
- Algorithmen und algorithmische Grundkonzepte
- Variablen
- Implementation von Algorithmen
- Erstellung und Analyse von Quelltexten
- Anwendung von Informatiksystemen

Konkretisierte Kompetenzerwartungen:

Die Schülerinnen und Schüler

 verarbeiten Daten mit einer Programmiersprache unter Berücksichtigung logischer und arithmetischer Operationen (MI),

- wählen geeignete Datentypen im Kontext eines Anwendungsbeispiels aus (MI),
- interpretieren Daten aus dem Ergebnis eines Verarbeitungsprozesses (DI),
- überprüfen algorithmische Eigenschaften (Endlichkeit der Beschreibung, Eindeutigkeit, Terminierung) in Handlungsvorschriften (A), (MKR 6.1)
- stellen Algorithmen in verschiedenen Repräsentationen dar (DI), (MKR 6.3)
- entwerfen und implementieren Algorithmen unter Verwendung von Variablen verschiedener Typen und unter Berücksichtigung des Prinzips der Modularisierung (MI), (MKR 6.1, 6.2, 6.3)
- kommentieren, modifizieren und ergänzen Quelltexte von Programmen nach Vorgaben (MI), (MKR 6.3)
- erläutern die Möglichkeit der Werteübergabe mithilfe von Parametern (MI), (MKR 6.1)
- überprüfen die Wirkungsweise eines Algorithmus durch zielgerichtetes Testen bei der Lösung gleichartiger Probleme (MI), (MKR 6.2, 6.4)
- beurteilen die Problemangemessenheit verwendeter Algorithmen (MI), (MKR 6.4)
- erläutern die Begriffe Syntax und Semantik einer Programmiersprache an Beispielen (KK),
- analysieren Quelltexte auf syntaktische Korrektheit (A/MI), (MKR 6.3)
- erstellen syntaktisch korrekte Quelltexte in einer geeigneten Dokumentenbeschreibungssprache und in einer Programmiersprache (MI), (MKR 6.3)
- wenden zielgerichtet Prinzipien der strukturierten Dateiverwaltung an (MI). (MKR 1.3)

Zeitbedarf: ca. 19 Ustd.

Ggf. Absprachen zur Leistungsüberprüfung: /

Verbindliche Hinweise und Absprachen zu diesem Unterrichtsvorhaben / Unsetzung: Die Modularisierung von Algorithmen und Programmen erfolgt durch die Verwendung bzw. Implementation von Methoden. Parameterübergaben werden an verschiedenen Beispielen erläutert. Zu mehreren Problemstellungen wird die Problemangemessenheit der verwendeten Algorithmen beurteilt. Um Werte zu speichern werden Variablen verwendet. Da in JavaScript Variablentypen nicht deklariert werden müssen, kann die Weiterverarbeitung von Benutzereingaben einen Anlass bieten, Variablentypen zu thematisieren und im Kontext eines Anwendungsbeispiels geeignete Datentypen auszuwählen. Ausgehend von einem nicht terminierenden Programm können einige Handlungsvorschriften und Programmteile auf algorithmische Eigenschaften (Endlichkeit der Beschreibung, Eindeutigkeit, Terminierung) überprüft werden. Zielgerichtetes Testen und die Analyse von Quelltexten auf syntaktische Korrektheit kann sowohl bei der Implementation selbst entwickelter Programmteile als auch im Zusammenhang mit der Überprüfung der Wirkungsweise vorgegebener Algorithmen erfolgen.

Entscheidungen zu fach- und/oder fächerübergreifenden Fragen: /

Summe Jahrgangsstufe 9 / 10: 96 Stunden